Efficient Illumination



A poor lighting plan can not only cost you money in increased electrical costs, it can also affect productivity and even worker-health.

There are many things that can be done today that will improve the efficiency of your illumination system and we can help you get there.



Typical Applications
Below you'll find some typical scenarios in which lighting control can be used.

Time Scheduling

Large open office areas work well with simple time scheduling - automatic switching at fixed hours of the day. Overrides allow users to turn on the lights after hours (using wall switches or telephone dial-up codes). Time scheduling can be accomplished with simple time clocks or more sophisticated computer controls. To save more energy, time scheduling systems can be designed so that lights are turned on manually rather than automatically at the beginning of the day, but are turned off automatically at 1- or 2-hour intervals after close of business

Bi-Level Switching

Some people prefer lower overhead lighting levels (especially if daylight is available). Lower light levels are often preferred for computer use, meetings or tasks that are not visually demanding. Bi-level switching can provide simple manual control. For example, in a typical 3-lamp fluorescent fixture, the outer lamps are switched separately from the middle lamp, allowing the user to switch on one, two, or all three lamps. This low-cost measure is a minimum control requirement in some state energy codes, and can provide a simple means of load-shedding during peak hours if the bi-level lighting circuits are remotely controllable.

Manual Dimming

In rooms where different light levels are needed at different times, such as conference rooms and some private offices, the use of manually-operated dimming controls is a common solution. These controls can be either wall-mounted or, for convenience, use wireless remote controls (like the controls for a TV or VCR).

Automatic Daylight Dimming

Automatic daylight dimming, or "daylighting," uses a light sensor to measure the amount of illumination in a space. Then, light output from a dimming ballast is adjusted to maintain the desired level of illumination. The combination of daylight dimming with appropriate task lighting is often very effective.

Corridors and open cubicles near windows, particularly those with task lighting, are good candidates for daylighting controls. Private offices with windows can also be equipped with individual daylight sensors. Initial commissioning and calibration of light sensors and controls is critical for effective daylighting, however; poorly calibrated daylight sensors can result in little or no savings, and may annoy occupants.

Demand Limiting

During peak demand periods utilities often charge significantly higher prices for electricity. Remote operation of dimming ballasts or bi-level switching helps operators to respond to price signals or utility requests to shed load to help avoid power outages.